Ray computational ghost imaging based on rotational modulation method
Abstract
The CGI (CGI) has the potential of low cost, low dose, and high resolution, which is very attractive for the development of radiation imaging field. However, many sub-coding plates must be used in the modulation process, which greatly affects the development of CGI technology. In order to reduce the coding plates, we refer to the rotation method of computed tomography (CT), then propose a novel CGI method based on rotational modulation method of a single-column striped coding plate. This method utilizes the spatial variation of a single sub-coding plate (rotation) to realize multiple modulation of the ray field and improves the utilization rate of a single sub-coding plate. However, for this rotation scheme of CGI, the traditional binary modulation matrix is no longer applicable. To obtain the system matrix of the rotated striped coding plate, an area model based on beam boundaries is established. Subsequently, numerical and Monte Carlo simulations were conducted. The results reveal that our scheme enables high-quality imaging of N*N resolution objects using only N sub-coding plates, under both full-sampling and under-sampling scenarios. Moreover, our scheme demonstrates superiority over the Hadamard scheme in both imaging quality and the number of required sub-coding plates, whether in scenarios of full-sampling or under-sampling. Finally, an {\alpha} ray imaging platform was established to further demonstrate the feasibility of the rotational modulation method. By employing our scheme, a mere 8 sub-coding plates were employed to achieve CGI of the radiation source intensity distribution, achieving a resolution of 8*8. Therefore, the novel ray CGI based on rotational modulation method can achieve high-quality imaging effect with fewer sub-coding plates, which has important practical value and research significance for promoting single-pixel radiation imaging technology.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- 10.48550/arXiv.2311.00503
- arXiv:
- arXiv:2311.00503
- Bibcode:
- 2023arXiv231100503Z
- Keywords:
-
- Physics - Medical Physics;
- Quantum Physics