MIRACLE: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control
Abstract
Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (\emph{e.g.}, \emph{language style, inner character nuances}), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose \textbf{\textsc{Miracle}}, a novel personalized dialogue generation method through \textbf{M}ult\textbf{I}ple Pe\textbf{R}sonal \textbf{A}ttributes \textbf{C}ontrol within \textbf{L}atent-Space \textbf{E}nergy-based Models. ttributes \textbf{C}ontrol within \textbf{L}atent-Space \textbf{E}nergy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that \textsc{Miracle} outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at \url{https://github.com/LZY-the-boys/MIRACLE}
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- 10.48550/arXiv.2310.18342
- arXiv:
- arXiv:2310.18342
- Bibcode:
- 2023arXiv231018342L
- Keywords:
-
- Computer Science - Computation and Language;
- Computer Science - Artificial Intelligence
- E-Print:
- Accepted by EMNLP2023 findings