Pointwise convergence of some continuous-time polynomial ergodic averages
Abstract
In this paper, we study the pointwise convergence of some continuous-time polynomial ergodic averages. Our method is based on the topological models of measurable flows. One of main results of the paper is as follow. Let $(X,\mathcal{X},\mu, (T^{t})_{t\in \mathbb{R}})$ and $(X,\mathcal{X},\mu, (S^{t})_{t\in \mathbb{R}})$ be two measurable flows, $a\in \mathbb{Q}$, and $Q\in \mathbb{R}[t]$ with $\text{deg}\ Q\ge 2$. Then for any $f_1, f_2, g\in L^{\infty}(\mu)$, the limit \begin{equation*} \lim\limits_{M\to\infty}\frac{1}{M}\int_{0}^{M}f_1(T^{t}x)f_2(T^{at}x)g(S^{Q(t)}x)dt \end{equation*} exists for $\mu$-a.e. $x\in X$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2310.16780
- Bibcode:
- 2023arXiv231016780H
- Keywords:
-
- Mathematics - Dynamical Systems
- E-Print:
- 46 pages