Unital positive Schur multipliers on $S_n^p$ with a completely isometric dilation
Abstract
Let $1<p\not=2<\infty$ and let $S^p_n$ be the associated Schatten von Neumann class over $n\times n$ matrices. We prove new characterizations of unital positive Schur multipliers $S^p_n\to S^p_n$ which can be dilated into an invertible complete isometry acting on a non-commutative $L^p$-space. Then we investigate the infinite dimensional case.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2310.14789
- Bibcode:
- 2023arXiv231014789D
- Keywords:
-
- Mathematics - Functional Analysis
- E-Print:
- MATHEMATICA SCANDINAVICA, 130(3) 2024