Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
Abstract
This comprehensive review delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). The development of Artificial Intelligence (AI), from its inception in the 1950s to the emergence of advanced neural networks and deep learning architectures, has made a breakthrough in LLMs, with models such as GPT-4o and Claude-3, and in Vision-Language Models (VLMs), with models such as CLIP and ALIGN. Prompt engineering is the process of structuring inputs, which has emerged as a crucial technique to maximize the utility and accuracy of these models. This paper explores both foundational and advanced methodologies of prompt engineering, including techniques such as self-consistency, chain-of-thought, and generated knowledge, which significantly enhance model performance. Additionally, it examines the prompt method of VLMs through innovative approaches such as Context Optimization (CoOp), Conditional Context Optimization (CoCoOp), and Multimodal Prompt Learning (MaPLe). Critical to this discussion is the aspect of AI security, particularly adversarial attacks that exploit vulnerabilities in prompt engineering. Strategies to mitigate these risks and enhance model robustness are thoroughly reviewed. The evaluation of prompt methods is also addressed, through both subjective and objective metrics, ensuring a robust analysis of their efficacy. This review also reflects the essential role of prompt engineering in advancing AI capabilities, providing a structured framework for future research and application.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- 10.48550/arXiv.2310.14735
- arXiv:
- arXiv:2310.14735
- Bibcode:
- 2023arXiv231014735C
- Keywords:
-
- Computer Science - Computation and Language;
- Computer Science - Artificial Intelligence;
- I.2.7