Zarankiewicz numbers near the triple system threshold
Abstract
For positive integers $m$ and $n$, the Zarankiewicz number $Z_{2,2}(m,n)$ can be defined as the maximum total degree of a linear hypergraph with $m$ vertices and $n$ edges. Guy determined $Z_{2,2}(m,n)$ for all $n \geq \binom{m}{2}/3+O(m)$. Here, we extend this by determining $Z_{2,2}(m,n)$ for all $n \geq \binom{m}{2}/3$ and, when $m$ is large, for all $n \geq \binom{m}{2}/6+O(m)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2310.12685
- Bibcode:
- 2023arXiv231012685C
- Keywords:
-
- Mathematics - Combinatorics;
- 05C35 (Primary) 05B40;
- 05B30 (Secondary)
- E-Print:
- 18 pages, 4 figures