Sub-Lorentzian geodesics on ${\rm GL}^{+}(2,\mathbb{C})$ with the generating space of Hermitian matrices in the Lie algebra $\mathfrak{gl}^{+}(2,\mathbb{C})$
Abstract
The Lie subgroup ${\rm GL}^{+}(2,\mathbb{C})$ of all matrices in the Lie group ${\rm GL}(2,\mathbb{C})$ with positive real determinant is equipped with a left-invariant sub-Lorentzian (anti)metric defined by the natural structure of the 4-dimensional Minkowski space-time on the subspace of Hermitian matrices in its Lie algebra. In base of the corresponding time-anti-optimal control problem, formulated in the paper, and Pontryagin minimum principle for it, using geodesics and shortest arcs of the corresponding left-invariant sub-Riemannian metric on the Lie subgroup ${\rm SL}(2,\mathbb{C})$, the authors found sub-Lorentzian nonspacelike geodesics and longest arcs.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2310.08905
- Bibcode:
- 2023arXiv231008905B
- Keywords:
-
- Mathematics - Differential Geometry;
- 53C17;
- 49J15;
- 53C50;
- 53C35;
- 53C30;
- 22E43
- E-Print:
- 27 pages