Non-radial implosion for compressible Euler and Navier-Stokes in $\mathbb{T}^3$ and $\mathbb{R}^3$
Abstract
In this paper we construct smooth, non-radial solutions of the compressible Euler and Navier-Stokes equation that develop an imploding finite time singularity. Our construction is motivated by the works [Merle, Raphaël, Rodnianski, and Szeftel, Ann. of Math., 196(2):567-778, 2022, Ann. of Math., 196(2):779-889, 2022], [Buckmaster, Cao-Labora, and Gómez-Serrano, arXiv:2208.09445, 2022], but is flexible enough to handle both periodic and non-radial initial data.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- 10.48550/arXiv.2310.05325
- arXiv:
- arXiv:2310.05325
- Bibcode:
- 2023arXiv231005325C
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematical Physics
- E-Print:
- 78 pages, 6 figures