AccEq-DRT: Planning Demand-Responsive Transit to reduce inequality of accessibility
Abstract
Accessibility measures how well a location is connected to surrounding opportunities. We focus on accessibility provided by Public Transit (PT). There is an evident inequality in the distribution of accessibility between city centers or close to main transportation corridors and suburbs. In the latter, poor PT service leads to a chronic car-dependency. Demand-Responsive Transit (DRT) is better suited for low-density areas than conventional fixed-route PT. However, its potential to tackle accessibility inequality has not yet been exploited. On the contrary, planning DRT without care to inequality (as in the methods proposed so far) can further improve the accessibility gap in urban areas. To the best of our knowledge this paper is the first to propose a DRT planning strategy, which we call AccEq-DRT, aimed at reducing accessibility inequality, while ensuring overall efficiency. To this aim, we combine a graph representation of conventional PT and a Continuous Approximation (CA) model of DRT. The two are combined in the same multi-layer graph, on which we compute accessibility. We then devise a scoring function to estimate the need of each area for an improvement, appropriately weighting population density and accessibility. Finally, we provide a bilevel optimization method, where the upper level is a heuristic to allocate DRT buses, guided by the scoring function, and the lower level performs traffic assignment. Numerical results in a simplified model of Montreal show that inequality, measured with the Atkinson index, is reduced by up to 34\%. Keywords: DRT Public, Transportation, Accessibility, Continuous Approximation, Network Design
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2310.04348
- Bibcode:
- 2023arXiv231004348W
- Keywords:
-
- Mathematics - Optimization and Control;
- Computer Science - Computers and Society
- E-Print:
- 15 pages