Continuous Deutsch Uncertainty Principle and Continuous Kraus Conjecture
Abstract
Let $(\Omega, \mu)$, $(\Delta, \nu)$ be measure spaces and $\{\tau_\alpha\}_{\alpha\in \Omega}$, $\{\omega_\beta\}_{\beta \in \Delta}$ be 1-bounded continuous Parseval frames for a Hilbert space $\mathcal{H}$. Then we show that \begin{align} (1) \quad \quad \quad \quad \log (\mu(\Omega)\nu(\Delta))\geq S_\tau(h)+S_\omega (h)\geq -2 \log \left(\frac{1+\displaystyle \sup_{\alpha \in \Omega, \beta \in \Delta}|\langle\tau_\alpha , \omega_\beta\rangle|}{2}\right) , \quad \forall h \in \mathcal{H}_\tau \cap \mathcal{H}_\omega, \end{align} where \begin{align*} &\mathcal{H}_\tau := \{h_1 \in \mathcal{H}: \langle h_1 , \tau_\alpha \rangle \neq 0, \alpha \in \Omega\}, \quad \mathcal{H}_\omega := \{h_2 \in \mathcal{H}: \langle h_2, \omega_\beta \rangle \neq 0, \beta \in \Delta\},\\ &S_\tau(h):= -\displaystyle\int\limits_{\Omega}\left|\left \langle \frac{h}{\|h\|}, \tau_\alpha\right\rangle \right|^2\log \left|\left \langle \frac{h}{\|h\|}, \tau_\alpha\right\rangle \right|^2\,d\mu(\alpha), \quad \forall h \in \mathcal{H}_\tau, \\ & S_\omega (h):= -\displaystyle\int\limits_{\Delta}\left|\left \langle \frac{h}{\|h\|}, \omega_\beta\right\rangle \right|^2\log \left|\left \langle \frac{h}{\|h\|}, \omega_\beta\right\rangle \right|^2\,d\nu(\beta), \quad \forall h \in \mathcal{H}_\omega. \end{align*} We call Inequality (1) as \textbf{Continuous Deutsch Uncertainty Principle}. Inequality (1) improves the uncertainty principle obtained by Deutsch \textit{[Phys. Rev. Lett., 1983]}. We formulate Kraus conjecture for 1-bounded continuous Parseval frames. We also derive continuous Deutsch uncertainty principles for Banach spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2310.01450
- Bibcode:
- 2023arXiv231001450M
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematical Physics;
- Mathematics - Operator Algebras;
- Mathematics - Quantum Algebra;
- 42C15
- E-Print:
- 8 Pages, 0 Figures