Overcoming Traditional No-Go Theorems: Quantum Advantage in Multiple Access Channels
Abstract
Extension of point-to-point communication model to the realm of multi-node configurations finds a plethora of applications in internet and telecommunication networks. Here, we establish a novel advantage of quantum communication in a commonly encountered network configuration known as the Multiple Access Channel (MAC). A MAC consists of multiple distant senders aiming to send their respective messages to a common receiver. Unlike the quantum superdense coding protocol, the advantage reported here is realized without invoking entanglement between the senders and the receiver. Notably, such an advantage is unattainable in traditional point-to-point communication involving one sender and one receiver, where the limitations imposed by the Holevo and Frankel Weiner no-go theorems come into play. Within the MAC setup, this distinctive advantage materializes through the receiver's unique ability to simultaneously decode the quantum systems received from multiple senders. Intriguingly, some of our MAC designs draw inspiration from various other constructs in quantum foundations, such as the Pusey-Barrett-Rudolph theorem and the concept of `nonlocality without entanglement', originally explored for entirely different purposes. Beyond its immediate applications in network communication, the presented quantum advantage hints at a profound connection with the concept of `quantum nonlocality without inputs' and holds the potential for semi-device-independent certification of entangled measurements.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- arXiv:
- arXiv:2309.17263
- Bibcode:
- 2023arXiv230917263C
- Keywords:
-
- Quantum Physics
- E-Print:
- Presentation improved, Typos corrected, Comments are welcome