Disentangling mappings defined on ICIS
Abstract
We study germs of hypersurfaces $(Y,0)\subset (\mathbb C^{n+1},0)$ that can be described as the image of $\mathscr A$-finite mappings $f:(X,S)\rightarrow (\mathbb C^{n+1},0)$ defined on an ICIS $(X,S)$ of dimension $n$. We extend the definition of the Jacobian module given by Fernández de Bobadilla, Nuño-Ballesteros and Peñafort-Sanchis when $X=\mathbb C^n$, which controls the image Milnor number $\mu_I(X,f)$. We apply these results to prove the case $n=2$ of the generalised Mond conjecture, which states that $\mu_I(X,f)\geq codim_{\mathscr A_e} (X,f)$, with equality if $(Y,0)$ is weighted homogeneous.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- arXiv:
- arXiv:2309.16193
- Bibcode:
- 2023arXiv230916193F
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Primary 58K15;
- Secondary 32S30;
- 58K40
- E-Print:
- 19 pages