Rationality problem for norm one tori for $A_5$ and ${\rm PSL}_2(\mathbb{F}_8)$ extensions
Abstract
We give a complete answer to the rationality problem (up to stable $k$-equivalence) for norm one tori $T=R^{(1)}_{K/k}(\mathbb{G}_m)$ of $K/k$ whose Galois closures $L/k$ are $A_5\simeq {\rm PSL}_2(\mathbb{F}_4)$ and ${\rm PSL}_2(\mathbb{F}_8)$ extensions. In particular, we prove that $T$ is stably $k$-rational for $G={\rm Gal}(L/k)\simeq {\rm PSL}_2(\mathbb{F}_{8})$, $H={\rm Gal}(L/K)\simeq (C_2)^3$ and $H\simeq (C_2)^3\rtimes C_7$ where $C_n$ is the cyclic group of order $n$. Based on the result, we conjecture that $T$ is stably $k$-rational for $G\simeq {\rm PSL}_2(\mathbb{F}_{2^d})$, $H\simeq (C_2)^d$ and $H\simeq (C_2)^d\rtimes C_{2^d-1}$. Some other cases $G\simeq A_n$, $S_n$, ${\rm GL}_n(\mathbb{F}_{p^d})$, ${\rm SL}_n(\mathbb{F}_{p^d})$, ${\rm PGL}_n(\mathbb{F}_{p^d})$, ${\rm PSL}_n(\mathbb{F}_{p^d})$ and $H\lneq G$ are also investigated for small $n$ and $p^d$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- arXiv:
- arXiv:2309.16187
- Bibcode:
- 2023arXiv230916187H
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory;
- Mathematics - Rings and Algebras;
- 11E72;
- 12F20;
- 13A50;
- 14E08;
- 20C10;
- 20G15
- E-Print:
- 26 pages. added RatProbNorm1Tori for GAP 4 ver.2024.08.21 to references which is available from KURENAI (Kyoto University Research Information Repository) https://doi.org/10.57723/289562. arXiv admin note: text overlap with arXiv:2302.06231