Sidorenko Hypergraphs and Random Turán Numbers
Abstract
Let $\mathrm{ex}(G_{n,p}^r,F)$ denote the maximum number of edges in an $F$-free subgraph of the random $r$-uniform hypergraph $G_{n,p}^r$. Building on recent work of Conlon, Lee, and Sidorenko, we prove non-trivial lower bounds on $\mathrm{ex}(G_{n,p}^r,F)$ whenever $F$ is not Sidorenko. This connection between Sidorenko's conjecture and random Turán problems gives new lower bounds on $\mathrm{ex}(G_{n,p}^r,F)$ whenever $F$ is not Sidorenko, and further allows us to bound how "far" from Sidorenko an $r$-graph $F$ is whenever upper bounds for $\mathrm{ex}(G_{n,p}^r,F)$ are known.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- arXiv:
- arXiv:2309.12873
- Bibcode:
- 2023arXiv230912873N
- Keywords:
-
- Mathematics - Combinatorics;
- 05D40;
- 05C35;
- 05C65;
- 05C80
- E-Print:
- 13 pages (+1 page Appendix), 1 figure