A result related to the Sendov conjecture
Abstract
The Sendov conjecture asserts that if $p(z) = \prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \leq 1$, then each disk $|z-z_j| \leq 1$ contains a zero of $p'$. Our purpose is the following: Given a zero $z_j$ of order $n \geq 2$, determine whether there exists $\zeta \not= z_j$ such that $p'(\zeta) = 0$ and $|z_j - \zeta| \leq 1$. In this paper we present some partial results on the problem.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- 10.48550/arXiv.2309.07142
- arXiv:
- arXiv:2309.07142
- Bibcode:
- 2023arXiv230907142D
- Keywords:
-
- Mathematics - Complex Variables
- E-Print:
- Annales Polonici Mathematici, 2023