On the Schur multipliers of Lie superalgebras of maximal class
Abstract
Let $L$ be a non-abelian nilpotent Lie superalgebra of dimensiom $(m|n)$. Nayak shows there is a non-negative $s(L)$ such that $s(L)=\frac{1}{2}(m+n-2)(m+n-1)+n+1-\dim{\mathcal{M}(L)}$. Here we intend that classify all non-abelian nilpotent Lie superalgebras, when $1\leq s(L)\leq 10$. Moreover, we classify the structure of all Lie superalgebras of dimension at most $5$ such that $\dim {L^2}=\dim {\mathcal{M}(L)}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- 10.48550/arXiv.2309.05415
- arXiv:
- arXiv:2309.05415
- Bibcode:
- 2023arXiv230905415A
- Keywords:
-
- Mathematics - Rings and Algebras;
- Mathematics - Commutative Algebra;
- 17B01;
- 17B05