New Atomic Decompositions of Weighted Local Hardy Spaces
Abstract
We introduce a new class of weighted local approximate atoms including classical weighted local atoms. Then we further obtain the weighted local approximate atomic decompositions of weighted local Hardy spaces $h_{\omega} ^p(R^n)$ with $0<p\leq 1$ and weight $\omega\in A_1(R^n)$. As an application, we prove the boundedness of inhomogeneous Calderón-Zygmund operators on $h_{\omega}^p(R^n)$ via weighted local approximate atoms and molecules.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- arXiv:
- arXiv:2309.00899
- Bibcode:
- 2023arXiv230900899Z
- Keywords:
-
- Mathematics - Functional Analysis;
- 42B30;
- 42B20;
- 47B37