On blow-up conditions for nonlinear higher order evolution inequalities
Abstract
For the problem $$ \left\{ \begin{aligned} & \partial_t^k u - \sum_{|\alpha| = m} \partial^\alpha a_\alpha (x, t, u) \ge f (|u|) \quad \mbox{in } {\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty), & u (x, 0) = u_0 (x), \: \partial_t u (x, 0) = u_1 (x), \ldots, \partial_t^{k-1} u (x, 0) = u_{k-1} (x) \ge 0, \end{aligned} \right. $$ we obtain exact conditions on the function $f$ guaranteeing that any global weak solution is identically zero.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- 10.48550/arXiv.2309.00574
- arXiv:
- arXiv:2309.00574
- Bibcode:
- 2023arXiv230900574K
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35B44;
- 35B08;
- 35J30;
- 35J70