Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot Anomaly Localization
Abstract
Contrastive Language-Image Pre-training (CLIP) models have shown promising performance on zero-shot visual recognition tasks by learning visual representations under natural language supervision. Recent studies attempt the use of CLIP to tackle zero-shot anomaly detection by matching images with normal and abnormal state prompts. However, since CLIP focuses on building correspondence between paired text prompts and global image-level representations, the lack of fine-grained patch-level vision to text alignment limits its capability on precise visual anomaly localization. In this work, we propose AnoCLIP for zero-shot anomaly localization. In the visual encoder, we introduce a training-free value-wise attention mechanism to extract intrinsic local tokens of CLIP for patch-level local description. From the perspective of text supervision, we particularly design a unified domain-aware contrastive state prompting template for fine-grained vision-language matching. On top of the proposed AnoCLIP, we further introduce a test-time adaptation (TTA) mechanism to refine visual anomaly localization results, where we optimize a lightweight adapter in the visual encoder using AnoCLIP's pseudo-labels and noise-corrupted tokens. With both AnoCLIP and TTA, we significantly exploit the potential of CLIP for zero-shot anomaly localization and demonstrate the effectiveness of AnoCLIP on various datasets.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- 10.48550/arXiv.2308.15939
- arXiv:
- arXiv:2308.15939
- Bibcode:
- 2023arXiv230815939D
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition