The generalized Bernoulli numbers and its relation with the Riemann zeta function at odd-integer arguments
Abstract
By using the generalized Bernoulli numbers, we deduce new integral representations for the Riemann zeta function at positive odd-integer arguments. The explicit expressions enable us to obtain criteria for the dimension of the vector space spanned over the rational by the $\zeta(2n+1)/\pi^{2n}$, $n\geq1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- arXiv:
- arXiv:2308.12521
- Bibcode:
- 2023arXiv230812521W
- Keywords:
-
- Mathematics - Number Theory;
- 11M06;
- 11C08;
- 11J72;
- 30A05