Learning the Plasticity: Plasticity-Driven Learning Framework in Spiking Neural Networks
Abstract
The evolution of the human brain has led to the development of complex synaptic plasticity, enabling dynamic adaptation to a constantly evolving world. This progress inspires our exploration into a new paradigm for Spiking Neural Networks (SNNs): a Plasticity-Driven Learning Framework (PDLF). This paradigm diverges from traditional neural network models that primarily focus on direct training of synaptic weights, leading to static connections that limit adaptability in dynamic environments. Instead, our approach delves into the heart of synaptic behavior, prioritizing the learning of plasticity rules themselves. This shift in focus from weight adjustment to mastering the intricacies of synaptic change offers a more flexible and dynamic pathway for neural networks to evolve and adapt. Our PDLF does not merely adapt existing concepts of functional and Presynaptic-Dependent Plasticity but redefines them, aligning closely with the dynamic and adaptive nature of biological learning. This reorientation enhances key cognitive abilities in artificial intelligence systems, such as working memory and multitasking capabilities, and demonstrates superior adaptability in complex, real-world scenarios. Moreover, our framework sheds light on the intricate relationships between various forms of plasticity and cognitive functions, thereby contributing to a deeper understanding of the brain's learning mechanisms. Integrating this groundbreaking plasticity-centric approach in SNNs marks a significant advancement in the fusion of neuroscience and artificial intelligence. It paves the way for developing AI systems that not only learn but also adapt in an ever-changing world, much like the human brain.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- 10.48550/arXiv.2308.12063
- arXiv:
- arXiv:2308.12063
- Bibcode:
- 2023arXiv230812063S
- Keywords:
-
- Computer Science - Neural and Evolutionary Computing