OSIRIS-REx Sample Analysis Plan -- Revision 3.0
Abstract
The Origins, Spectral Interpretation, Resource Identification, and Security Regolith Explorer (OSIRIS-REx) spacecraft arrived at its target, near-Earth asteroid 101955 Bennu, in December 2018. After one year of operating in proximity, the team selected a primary site for sample collection. In October 2020, the spacecraft descended to the surface of Bennu and collected a sample. The spacecraft departed Bennu in May 2021 and will return the sample to Earth in September 2023. The analysis of the returned sample will produce key data to determine the history of this B-type asteroid and that of its components and precursor objects. The main goal of the OSIRIS-REx Sample Analysis Plan is to provide a framework for the Sample Analysis Team to meet the Level 1 mission requirement to analyze the returned sample to determine presolar history, formation age, nebular and parent-body alteration history, relation to known meteorites, organic history, space weathering, resurfacing history, and energy balance in the regolith of Bennu. To achieve this goal, this plan establishes a hypothesis-driven framework for coordinated sample analyses, defines the analytical instrumentation and techniques to be applied to the returned sample, provides guidance on the analysis strategy for baseline, overguide, and threshold amounts of returned sample, including a rare or unique lithology, describes the data storage, management, retrieval, and archiving system, establishes a protocol for the implementation of a micro-geographical information system to facilitate co-registration and coordinated analysis of sample science data, outlines the plans for Sample Analysis Readiness Testing, and provides guidance for the transfer of samples from curation to the Sample Analysis Team.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- 10.48550/arXiv.2308.11794
- arXiv:
- arXiv:2308.11794
- Bibcode:
- 2023arXiv230811794L
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 274 pages