Super approximation for $\text{SL}_2\times \text{SL}_2$ and $\text{ASL}_2$
Abstract
Let $S\subset \text{SL}_2(\mathbb Z)\times \text{SL}_2(\mathbb Z)$ or $\text{SL}_2(\mathbb Z)\ltimes \mathbb Z^2$ be finite symmetric and assume $S$ generates a group $G$ which is a Zariski-dense subgroup $\text{SL}_2(\mathbb Z)\times \text{SL}_2(\mathbb Z)$ or $\text{SL}_2(\mathbb Z)\ltimes \mathbb Z^2$. We prove that the Cayley graphs $$\{\mathcal Cay(G(\text{mod } q), S (\text{mod } q))\}_{q\in \mathbb Z}$$ form a family of expanders.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- arXiv:
- arXiv:2308.09982
- Bibcode:
- 2023arXiv230809982T
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Combinatorics;
- Mathematics - Dynamical Systems;
- Mathematics - Number Theory;
- 05E18
- E-Print:
- We fixed some inaccuracies and simplified some arguments in the previous version. We also added a proof of super-approximation for a new case $\text{ASL}_2$