Arithmetic progressions and holomorphic phase retrieval
Abstract
We study the determination of a holomorphic function from its absolute value. Given a parameter $\theta \in \mathbb{R}$, we derive the following characterization of uniqueness in terms of rigidity of a set $\Lambda \subseteq \mathbb{R}$: if $\mathcal{F}$ is a vector space of entire functions containing all exponentials $e^{\xi z}, \, \xi \in \mathbb{C} \setminus \{ 0 \}$, then every $F \in \mathcal{F}$ is uniquely determined up to a unimodular phase factor by $\{|F(z)| : z \in e^{i\theta}(\mathbb{R} + i\Lambda)\}$ if and only if $\Lambda$ is not contained in an arithmetic progression $a\mathbb{Z}+b$. Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, $\mathbb{Z} \times \tilde{\mathbb{Z}}$ is a uniqueness set for the Gabor phase retrieval problem in $L^2(\mathbb{R}_+)$, provided that $\tilde{\mathbb{Z}}$ is a suitable perturbation of the integers.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- arXiv:
- arXiv:2308.05722
- Bibcode:
- 2023arXiv230805722L
- Keywords:
-
- Mathematics - Complex Variables;
- Mathematics - Functional Analysis;
- 30D20;
- 30A99;
- 94A20
- E-Print:
- 14 pages