The Cheeger constant as limit of Sobolev-type constants
Abstract
Let $\Omega$ be a bounded, smooth domain of $\mathbb{R}^{N},$ $N\geq2.$ For $1<p<N$ and $0<q(p)<p^{\ast}:=\frac{Np}{N-p}$ let \[ \lambda_{p,q(p)}:=\inf\left\{ \int_{\Omega}\left\vert \nabla u\right\vert ^{p}\mathrm{d}x:u\in W_{0}^{1,p}(\Omega)\text{ \ and \ }\int_{\Omega }\left\vert u\right\vert ^{q(p)}\mathrm{d}x=1\right\} . \] We prove that if $\lim_{p\rightarrow1^{+}}q(p)=1,$ then $\lim_{p\rightarrow 1^{+}}\lambda_{p,q(p)}=h(\Omega)$, where $h(\Omega)$ denotes the Cheeger constant of $\Omega.$ Moreover, we study the behavior of the positive solutions $w_{p,q(p)}$ to the Lane-Emden equation $-\operatorname{div}(\left\vert \nabla w\right\vert ^{p-2}\nabla w)=\left\vert w\right\vert ^{q-2}w,$ as $p\rightarrow1^{+}.$
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.15618
- Bibcode:
- 2023arXiv230715618E
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35B40;
- 35J92;
- 49Q20
- E-Print:
- 16 pages. Typing errors have been corrected, one reference has been added, and the abstract has been slightly modified