Normalized ground states for a fractional Choquard system in $\mathbb{R}$
Abstract
In this paper, we study the following fractional Choquard system \begin{align*} \begin{split} \left\{ \begin{array}{ll} (-\Delta)^{1/2}u=\lambda_1 u+(I_\mu*F(u,v))F_u (u,v), \quad\mbox{in}\ \ \mathbb{R}, (-\Delta)^{1/2}v=\lambda_2 v+(I_\mu*F(u,v)) F_v(u,v), \quad\mbox{in}\ \ \mathbb{R}, \displaystyle\int_{\mathbb{R}}|u|^2\mathrm{d}x=a^2,\quad \displaystyle\int_{\mathbb{R}}|v|^2\mathrm{d}x=b^2,\quad u,v\in H^{1/2}(\mathbb{R}), \end{array} \right. \end{split} \end{align*} where $(-\Delta)^{1/2}$ denotes the $1/2$-Laplacian operator, $a,b>0$ are prescribed, $\lambda_1,\lambda_2\in \mathbb{R}$, $I_\mu(x)=\frac{1}{|x|^\mu}$ with $\mu\in(0,1)$, $F_u,F_v$ are partial derivatives of $F$ and $F_u,F_v$ have exponential critical growth in $\mathbb{R}$. By using a minimax principle and analyzing the monotonicity of the ground state energy with respect to the prescribed masses, we obtain at least one normalized ground state solution for the above system.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.14356
- Bibcode:
- 2023arXiv230714356C
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- arXiv admin note: substantial text overlap with arXiv:2306.02963, arXiv:2307.06602