On the distribution of the entries of a fixed-rank random matrix over a finite field
Abstract
Let $r > 0$ be an integer, let $\mathbb{F}_q$ be a finite field of $q$ elements, and let $\mathcal{A}$ be a nonempty proper subset of $\mathbb{F}_q$. Moreover, let $\mathbf{M}$ be a random $m \times n$ rank-$r$ matrix over $\mathbb{F}_q$ taken with uniform distribution. We prove, in a precise sense, that, as $m, n \to +\infty$ and $r,q,\mathcal{A}$ are fixed, the number of entries of $\mathbf{M}$ that belong to $\mathcal{A}$ approaches a normal distribution.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.14172
- Bibcode:
- 2023arXiv230714172S
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Probability;
- 15B52 (Primary) 11T99;
- 11B33;
- 05A16 (Secondary)