Meromorphic Continuation Of Global Zeta Function For Number Fields
Abstract
In the paper, we shall establish the existence of a meromorphic continuation of the Global Zeta Function $\zeta(f,\chi)$ of a Global Number Field $K$ and also deduce the functional equation for the same, using different properties of the idèle class group $\mathcal{C}_K^1$ of a global field $K$ extensively defined using basic notions of Adèles ($\mathbb{A}_{K}$) and Idèles ($\mathbb{I}_{K}$) of $K$, and also evaluating Fourier Transforms of functions $f$ on the space $\mathcal{S}(\mathbb{A}_{K})$ of Adèlic Schwartz-Bruhat Functions. A brief overview of most of the concepts required to prove our desired result have been provided to the readers in the earlier sections of the text.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.12007
- Bibcode:
- 2023arXiv230712007D
- Keywords:
-
- Mathematics - History and Overview;
- Primary 11-02;
- 11R04;
- 11R37;
- 11M06;
- 11F70 . Secondary 11M41;
- 28C10;
- 11R56
- E-Print:
- 23 Pages