Coloring_of_some_crown-free_graphs
Abstract
Let $G$ and $H$ be two vertex disjoint graphs. The {\em union} $G\cup H$ is the graph with $V(G\cup H)=V(G)\cup (H)$ and $E(G\cup H)=E(G)\cup E(H)$. The {\em join} $G+H$ is the graph with $V(G+H)=V(G)+V(H)$ and $E(G+H)=E(G)\cup E(H)\cup\{xy\;|\; x\in V(G), y\in V(H)$$\}$. We use $P_k$ to denote a {\em path} on $k$ vertices, use {\em fork} to denote the graph obtained from $K_{1,3}$ by subdividing an edge once, and use {\em crown} to denote the graph $K_1+K_{1,3}$. In this paper, we show that (\romannumeral 1) $\chi(G)\le\frac{3}{2}(\omega^2(G)-\omega(G))$ if $G$ is (crown, $P_5$)-free, (\romannumeral 2) $\chi(G)\le\frac{1}{2}(\omega^2(G)+\omega(G))$ if $G$ is (crown, fork)-free, and (\romannumeral 3) $\chi(G)\le\frac{1}{2}\omega^2(G)+\frac{3}{2}\omega(G)+1$ if $G$ is (crown, $P_3\cup P_2$)-free.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.11946
- Bibcode:
- 2023arXiv230711946W
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- arXiv admin note: text overlap with arXiv:2302.06800