Shifts of semi-invariants and complete commutative subalgebras in polynomial Poisson algebras
Abstract
We study commutative subalgebras in the symmetric algebra $S(\mathfrak{g})$ of a finite-dimensional Lie algebra $\mathfrak{g}$. A. M. Izosimov introduced extended Mischenko-Fomenko subalgebras $\tilde{\mathcal{F}}_a$ and gave a completeness criterion for them. We generalize his construction and extend Mischenko-Fomenko subalgebras with the shifts of all semi-invariants of $\mathfrak{g}$. We prove that the new commutative subalgebras have the same transcendence degree as $\tilde{\mathcal{F}}_a$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.10418
- Bibcode:
- 2023arXiv230710418K
- Keywords:
-
- Mathematics - Representation Theory