Prompting for Automatic Log Template Extraction
Abstract
Log parsing, which involves log template extraction from semi-structured logs to produce structured logs, is the first and the most critical step in automated log analysis. However, current log parsers suffer from limited effectiveness for two reasons. First, traditional data-driven log parsers solely rely on heuristics or handcrafted features designed by domain experts, which may not consistently perform well on logs from diverse systems. Second, existing supervised log parsers require model tuning, which is often limited to fixed training samples and causes sub-optimal performance across the entire log source. To address this limitation, we propose DivLog, an effective log parsing framework based on the in-context learning (ICL) ability of large language models (LLMs). Specifically, before log parsing, DivLog samples a small amount of offline logs as candidates by maximizing their diversity. Then, during log parsing, DivLog selects five appropriate labeled candidates as examples for each target log and constructs them into a prompt. By mining the semantics of examples in the prompt, DivLog generates a target log template in a training-free manner. In addition, we design a straightforward yet effective prompt format to extract the output and enhance the quality of the generated log templates. We conducted experiments on 16 widely-used public datasets. The results show that DivLog achieves (1) 98.1% Parsing Accuracy, (2) 92.1% Precision Template Accuracy, and (3) 92.9% Recall Template Accuracy on average, exhibiting state-of-the-art performance.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- 10.48550/arXiv.2307.09950
- arXiv:
- arXiv:2307.09950
- Bibcode:
- 2023arXiv230709950X
- Keywords:
-
- Computer Science - Software Engineering
- E-Print:
- Accepted by ICSE'24