Flexible single multimode fiber imaging using white LED
Abstract
Multimode fiber (MMF) has been proven to have good potential in imaging and optical communication because of its advantages of small diameter and large mode numbers. However, due to the mode coupling and modal dispersion, it is very sensitive to environmental changes. Minor changes in the fiber shape can lead to difficulties in information reconstruction. Here, white LED and cascaded Unet are used to achieve MMF imaging to eliminate the effect of fiber perturbations. The output speckle patterns in three different color channels of the CCD camera produced by transferring images through the MMF are concatenated and inputted into the cascaded Unet using channel stitching technology to improve the reconstruction effects. The average Pearson correlation coefficient (PCC) of the reconstructed images from the Fashion-MINIST dataset is 0.83. In order to check the flexibility of such a system, perturbation tests on the image reconstruction capability by changing the fiber shapes are conducted. The experimental results show that the MMF imaging system has good robustness properties, i. e. the average PCC remains 0.83 even after completely changing the shape of the MMF. This research potentially provides a flexible approach for the practical application of MMF imaging.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.09714
- Bibcode:
- 2023arXiv230709714F
- Keywords:
-
- Physics - Optics;
- Electrical Engineering and Systems Science - Image and Video Processing