Sequences Derived from The Symmetric Powers of $\{1,2,\ldots,k\}$
Abstract
For a fixed integer $k$, we define a sequence $A_k=(a_k(n))_{n\geq0}$ and a corresponding sparse subsequence $S_k$ using the cardinality of the $n$-th symmetric power of the set $\{1,2,\ldots, k\}$. For $k\in\{2,\dots,8\}$, we find recursive formulas for $S_k$, and show that the values $a_{k}(0)$, $a_{k}(1)$, and $a_{k}(3)$ are sufficient for constructing $A_{k}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.07733
- Bibcode:
- 2023arXiv230707733H
- Keywords:
-
- Mathematics - Combinatorics;
- 11B37
- E-Print:
- Journal of Integer Sequences, Vol. 26 (2023), Article 23.7.5