Rationality of the Local Jacquet-Langlands Correspondence for GL(n)
Abstract
We relate the field of definition of representations $\sigma$ of the group of units $D^\times$ of a non-archimedean division algebra $D/F$ to that of its L-parameter $\varphi_\sigma\colon W_F\to \mathrm{GL}_n(\mathbb C)$, extending results of [Prasad-Ramakrishnan]. The field of definitions are controlled by division algebras $\mathcal D_{\sigma}$ and $\mathcal D_{\varphi_\sigma}$ over the field of rationality $\mathbb Q(\pi)$, and we completely pin down the relationship between the Hasse invariants at places not over $p$. Under some additional assumptions we can also specify the Hasse invariants at places over $p$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.06039
- Bibcode:
- 2023arXiv230706039S
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Representation Theory
- E-Print:
- 8 pages