On the friable mean-value of the Erdős-Hooley Delta function
Abstract
For integer $n$ and real $u$, define $\Delta(n,u):= |\{d : d \mid n,\,{\rm e}^u <d\leqslant {\rm e}^{u+1} \}|$. Then, put $ \Delta(n):=\max_{u\in{\mathbb R}} \Delta(n,u).$ We provide uniform upper and lower bounds for the mean-value of $\Delta(n)$ over friable integers, i.e. integers free of large prime factors.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.05530
- Bibcode:
- 2023arXiv230705530M
- Keywords:
-
- Mathematics - Number Theory;
- 11N25;
- 11N37