Vertex algebras and TKK algebras
Abstract
In this paper, we associate the TKK algebra $\widehat{\mathcal{G}}(\mathcal{J})$ with vertex algebras through twisted modules. Firstly, we prove that for any complex number $\ell$, the category of restricted $\widehat{\mathcal{G}}(\mathcal{J})$-modules of level $\ell$ is canonically isomorphic to the category of $\sigma$-twisted $V_{\widehat{\mathcal{C}_{\mathfrak g}}}(\ell,0)$-modules, where $V_{\widehat{\mathcal{C}_{\mathfrak g}}}(\ell,0)$ is a vertex algebra arising from the toroidal Lie algebra of type $C_2$ and $\sigma$ is an isomorphism of $V_{\widehat{\mathcal{C}_{\mathfrak g}}}(\ell,0)$ induced from the involution of this toroidal Lie algebra. Secondly, we prove that for any nonnegative integer $\ell$, the integrable restricted $\widehat{\mathcal{G}}(\mathcal{J})$-modules of level $\ell$ are exactly the $\sigma$-twisted modules for the quotient vertex algebra $L_{\widehat{\mathcal{C}_{\mathfrak g}}}(\ell,0)$ of $V_{\widehat{\mathcal{C}_{\mathfrak g}}}(\ell,0)$. Finally, we classify the irreducible $\frac{1}{2}{\mathbb{N}}$-graded $\sigma$-twisted $L_{\widehat{\mathcal{C}_{\mathfrak g}}}(\ell,0)$-modules.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.00707
- Bibcode:
- 2023arXiv230700707C
- Keywords:
-
- Mathematics - Quantum Algebra
- E-Print:
- 19 pages