Complete bipartite graphs without small rainbow stars
Abstract
The $k$-edge-colored bipartite Gallai-Ramsey number $\operatorname{bgr}_k(G:H)$ is defined as the minimum integer $n$ such that $n^2\geq k$ and for every $N\geq n$, every edge-coloring (using all $k$ colors) of complete bipartite graph $K_{N,N}$ contains a rainbow copy of $G$ or a monochromatic copy of $H$. In this paper, we first study the structural theorem on the complete bipartite graph $K_{n,n}$ with no rainbow copy of $K_{1,3}$. Next, we utilize the results to prove the exact values of $\operatorname{bgr}_{k}(P_4: H)$, $\operatorname{bgr}_{k}(P_5: H)$, $\operatorname{bgr}_{k}(K_{1,3}: H)$, where $H$ is a various union of cycles and paths and stars.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.17607
- Bibcode:
- 2023arXiv230617607C
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 13 pages