The ${\mathbb S}_n$-equivariant Euler characteristic of the moduli space of graphs
Abstract
We prove a formula for the ${\mathbb S}_n$-equivariant Euler characteristic of the moduli space of graphs $\mathcal{MG}_{g,n}$. Moreover, we prove that the rational ${\mathbb S}_n$-invariant cohomology of $\mathcal{MG}_{g,n}$ stabilizes for large $n$. That means, if $n \geq g \geq 2$, then there are isomorphisms $H^k(\mathcal{MG}_{g,n};\mathbb{Q})^{{\mathbb S}_n} \rightarrow H^k(\mathcal{MG}_{g,n+1};\mathbb{Q})^{{\mathbb S}_{n+1}}$ for all $k$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- 10.48550/arXiv.2306.15598
- arXiv:
- arXiv:2306.15598
- Bibcode:
- 2023arXiv230615598B
- Keywords:
-
- Mathematics - Algebraic Topology;
- High Energy Physics - Theory;
- Mathematical Physics;
- Mathematics - Group Theory;
- 58D29;
- 18G85;
- 14D22 (Primary) 05E18;
- 14T99;
- 20F28;
- 20F65;
- 20J06 (Secondary)
- E-Print:
- 20 pages, tables of Euler characteristics and program code are included in the ancillary files