Planar Turán number of the 7-cycle
Abstract
The $\textit{planar Turán number}$ $\textrm{ex}_{\mathcal P}(n,H)$ of a graph $H$ is the maximum number of edges in an $n$-vertex planar graph without $H$ as a subgraph. Let $C_{\ell}$ denote the cycle of length $\ell$. The planar Turán number $\textrm{ex}_{\mathcal P}(n,C_{\ell})$ behaves differently for $\ell\le 10$ and for $\ell\ge 11$, and it is known when $\ell \in \{3,4,5,6\}$. We prove that $\textrm{ex}_{\mathcal P}(n,C_7) \le \frac{18n}{7} - \frac{48}{7}$ for all $n > 38$, and show that equality holds for infinitely many integers $n$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.13594
- Bibcode:
- 2023arXiv230613594S
- Keywords:
-
- Mathematics - Combinatorics;
- 05C35;
- 05C10