The level $d$ mapping class group of a compact non-orientable surface
Abstract
Let $N_{g,n}$ be a genus $g$ compact non-orientable surface with $n$ boundaries. We explain about relations on the level $d$ mapping class group $\mathcal{M}_d(N_{g,0})$ of $N_{g,0}$ and the level $d$ principal congruence subgroup $\Gamma_d(g-1)$ of $\mathrm{SL}(g-1;\mathbb{Z})$. As applications, we give a normal generating set of $\mathcal{M}_d(N_{g,n})$ for $g\ge4$ and $n\ge0$, and finite generating sets of $\mathcal{M}_d(N_{g,n})$ for some $d$, any $g\ge4$ and $n\ge0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.13555
- Bibcode:
- 2023arXiv230613555K
- Keywords:
-
- Mathematics - Geometric Topology
- E-Print:
- 21 pages, 10 figures