Sharp estimates and non-degeneracy of low energy nodal solutions for the Lane-Emden equation in dimension two
Abstract
We study the Lane-Emden problem \[\begin{cases} -\Delta u_p =|u_p|^{p-1}u_p&\text{in}\quad \Omega, u_p=0 &\text{on}\quad\partial\Omega, \end{cases}\] where $\Omega\subset\mathbb R^2$ is a smooth bounded domain and $p>1$ is sufficiently large. We obtain sharp estimates and non-degeneracy of low energy nodal solutions $u_p$ (i.e. nodal solutions satisfying $\lim_{p\to+\infty}p\int_{\Omega}|u_p|^{p+1}dx=16\pi e$). As applications, we prove that the comparable condition $p(\|u_p^+\|_{\infty}-\|u_p^-\|_{\infty})=O(1)$ holds automatically for least energy nodal solutions, which confirms a conjecture raised by (Grossi-Grumiau-Pacella, Ann.I.H. Poincare-AN, 30 (2013), 121-140) and (Grossi-Grumiau-Pacella, J.Math.Pures Appl. 101 (2014), 735-754).
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- 10.48550/arXiv.2306.13451
- arXiv:
- arXiv:2306.13451
- Bibcode:
- 2023arXiv230613451C
- Keywords:
-
- Mathematics - Analysis of PDEs