A Simple Data Augmentation for Feature Distribution Skewed Federated Learning
Abstract
Federated Learning (FL) facilitates collaborative learning among multiple clients in a distributed manner and ensures the security of privacy. However, its performance inevitably degrades with non-Independent and Identically Distributed (non-IID) data. In this paper, we focus on the feature distribution skewed FL scenario, a common non-IID situation in real-world applications where data from different clients exhibit varying underlying distributions. This variation leads to feature shift, which is a key issue of this scenario. While previous works have made notable progress, few pay attention to the data itself, i.e., the root of this issue. The primary goal of this paper is to mitigate feature shift from the perspective of data. To this end, we propose a simple yet remarkably effective input-level data augmentation method, namely FedRDN, which randomly injects the statistical information of the local distribution from the entire federation into the client's data. This is beneficial to improve the generalization of local feature representations, thereby mitigating feature shift. Moreover, our FedRDN is a plug-and-play component, which can be seamlessly integrated into the data augmentation flow with only a few lines of code. Extensive experiments on several datasets show that the performance of various representative FL methods can be further improved by integrating our FedRDN, demonstrating its effectiveness, strong compatibility and generalizability. Code will be released.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.09363
- Bibcode:
- 2023arXiv230609363Y
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Artificial Intelligence
- E-Print:
- 11 pages, 3 figures