An upper bound on the mean value of the Erdős-Hooley Delta function
Abstract
The Erdős-Hooley Delta function is defined for $n\in\mathbb{N}$ as $\Delta(n)=\sup_{u\in\mathbb{R}} \#\{d|n : e^u<d\le e^{u+1}\}$. We prove that $\sum_{n\le x} \Delta(n) \ll x(\log\log x)^{11/4}$ for all $x\ge100$. This improves on earlier work of Hooley, Hall--Tenenbaum and La Bretèche-Tenenbaum.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.08615
- Bibcode:
- 2023arXiv230608615K
- Keywords:
-
- Mathematics - Number Theory;
- Primary: 11N25;
- Secondary: 11N37;
- 11N64
- E-Print:
- 18 pages. Some minor changes. This is the final version that will apper in Proc. London Math. Soc