An alternative proof of $\widehat{\mathfrak{sl}}_2'$ standard module semi-infinite structure
Abstract
B. Feigin and A. Stoyanovsky found the basis of semi-infinite monomials in standard $\widehat{\mathfrak{sl}}_2'$-module $L_{(0, 1)}$ with Lefschetz formula for the corresponding flag variety. These semi-infinite monomials are constructed by modes of the current $e(z) = \sum\limits_{n\in\mathbb{Z}} e_n\,z^{- n - 1}$. We give an alternative proof of this fact using explicit fermionic construction of this module. Namely, we realize $L_{(0, 1)}$ inside of the zero-charge subspace of Fermionic Fock space and show linear independence of vectors corresponding to semi-infinite monomials.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.07947
- Bibcode:
- 2023arXiv230607947K
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematical Physics
- E-Print:
- Several typos are corrected