Deciding whether a mapping torus is of full rank
Abstract
The mapping torus induced by an automorphism $\phi$ of the free abelian group $\mathbb{Z}^n$ is a semi-direct product $G=\mathbb{Z}^n\rtimes_\phi \mathbb{Z}$. We show that whether the rank of $G$ is equal to $n+1$ is decidable. As a corollary, the rank of $\mathbb{Z}^3\rtimes_\phi \mathbb{Z}$ is decidable.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- 10.48550/arXiv.2306.07602
- arXiv:
- arXiv:2306.07602
- Bibcode:
- 2023arXiv230607602L
- Keywords:
-
- Mathematics - Group Theory