SNeL: A Structured Neuro-Symbolic Language for Entity-Based Multimodal Scene Understanding
Abstract
In the evolving landscape of artificial intelligence, multimodal and Neuro-Symbolic paradigms stand at the forefront, with a particular emphasis on the identification and interaction with entities and their relations across diverse modalities. Addressing the need for complex querying and interaction in this context, we introduce SNeL (Structured Neuro-symbolic Language), a versatile query language designed to facilitate nuanced interactions with neural networks processing multimodal data. SNeL's expressive interface enables the construction of intricate queries, supporting logical and arithmetic operators, comparators, nesting, and more. This allows users to target specific entities, specify their properties, and limit results, thereby efficiently extracting information from a scene. By aligning high-level symbolic reasoning with low-level neural processing, SNeL effectively bridges the Neuro-Symbolic divide. The language's versatility extends to a variety of data types, including images, audio, and text, making it a powerful tool for multimodal scene understanding. Our evaluations demonstrate SNeL's potential to reshape the way we interact with complex neural networks, underscoring its efficacy in driving targeted information extraction and facilitating a deeper understanding of the rich semantics encapsulated in multimodal AI models.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.06036
- Bibcode:
- 2023arXiv230606036F
- Keywords:
-
- Computer Science - Artificial Intelligence