Grading of affine Weyl semi-groups of Kac-Moody type
Abstract
For any Kac-Moody root data $\mathcal D$, D. Muthiah and D. Orr have defined a partial order on the semi-direct product $W^+$ of the integral Tits cone with the vectorial Weyl group of $\mathcal D$, and a strictly compatible $\mathbb Z$-valued length function. We classify covers for this order and show that this length function defines a $\mathbb Z$-grading of $W^+$, generalizing the case of affine ADE root systems and giving a positive answer to a conjecture of Muthiah and Orr.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.04514
- Bibcode:
- 2023arXiv230604514P
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Combinatorics;
- 20F55 (20G44 20C08 22E67)
- E-Print:
- 47 pages, 3 figures