The asymptotics of $r(4,t)$
Abstract
For integers $s,t \geq 2$, the Ramsey numbers $r(s,t)$ denote the minimum $N$ such that every $N$-vertex graph contains either a clique of order $s$ or an independent set of order $t$. In this paper we prove \[ r(4,t) = \Omega\Bigl(\frac{t^3}{\log^4 \! t}\Bigr) \quad \quad \mbox{ as }t \rightarrow \infty\] which determines $r(4,t)$ up to a factor of order $\log^2 \! t$, and solves a conjecture of Erdős.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.04007
- Bibcode:
- 2023arXiv230604007M
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- Updated journal version