Decay of extremals of Morrey's inequality
Abstract
We study the decay (at infinity) of extremals of Morrey's inequality in $\mathbb{R}^n$. These are functions satisfying $$ \displaystyle \sup_{x\neq y}\frac{|u(x)-u(y)|}{|x-y|^{1-\frac{n}{p}}}= C(p,n)\|\nabla u\|_{L^p(\mathbb{R}^n)} , $$ where $p>n$ and $C(p,n)$ is the optimal constant in Morrey's inequality. We prove that if $n \geq 2$ then any extremal has a power decay of order $\beta$ for any $$ \beta<-\frac13+\frac{2}{3(p-1)}+\sqrt{\left(-\frac13+\frac{2}{3(p-1)}\right)^2+\frac13}. $$
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- 10.48550/arXiv.2306.03471
- arXiv:
- arXiv:2306.03471
- Bibcode:
- 2023arXiv230603471H
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35B65;
- 35J70