The Atomic Characterization of Weighted Local Hardy Spaces and Its Applications
Abstract
The purpose of this paper is to obtain atomic decomposition characterization of the weighted local Hardy space $h_{\omega}^{p}(\mathbb {R}^{n})$ with $\omega\in A_{\infty}(\mathbb {R}^{n})$. We apply the discrete version of Calderón's identity and the weighted Littlewood--Paley--Stein theory to prove that $h_{\omega}^{p}(\mathbb {R}^{n})$ coincides with the weighted$\text{-}(p,q,s)$ atomic local Hardy space $h_{\omega,atom}^{p,q,s}(\mathbb {R}^{n})$ for $0<p<\infty$. The atomic decomposition theorems in our paper improve the previous atomic decomposition results of local weighted Hardy spaces in the literature. As applications, we derive the boundedness of inhomogeneous Calderón--Zygmund singular integrals and local fractional integrals on weighted local Hardy spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.01441
- Bibcode:
- 2023arXiv230601441C
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Functional Analysis;
- 42B30
- E-Print:
- 30 pages